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This White Paper is one in a series of articles discussing various aspects in obtaining sharp 
photographs such as obtaining sharp focus, avoiding shake and motion blur, possible lens resolution 
etc. This paper tries to provide a common basis for a quantitative discussion of these aspects.

1. Measures
Many authors use some form of test chart which contain high contrast lines with varying distance. 
Their distance is typically described as „lines per mm“ where mm applies to the recording medium 
(sensor) rather than the test chart. In the digital age this head led to confusion because some people 
treated the background color as yet another line. In order to be precise, the test chart line density is  
now described by „line pairs per mm“ or lp/mm or „cycles/mm“ and means the same as lines per 
mm. The varying interpretation is  now described by „line widths per mm“ or LW/mm. 50 lp/mm 
and 100 LW/mm are the same.

In order to become independent on the size of the recording medium, all measures are often scaled 
to the image or picture height (PH). Esp. LW/PH is a popular unit and with a 35mm film or sensor, 

100 LW/mm are 24 mm/PH × 100 LW/mm = 2400 LW/PH. LW/PH is often compared directly 

against the vertical pixel resolution of a sensor and many incorrectly believe that resolution 
measures cannot get larger than it. Another unit is „cycles/pixel“ which is 0.5 when LW/PH equals 
the vertical number of pixels. This measure (0.5 cy/px) is sometimes called the Nyquist freqnency. 
Interestingly, the most naive measure (LW/px) is almost never seen in published material ;)

Below are a number of typical test charts which can be used for visual inspection of achievable 
resolution:

http://www.falklumo.com/lumolabs/articles/sharpness/ImageSharpness.pdf
http://falklumo.blogspot.com/2010/06/lumolabs-understanding-image-sharpness.html#comments
http://falklumo.blogspot.com/2010/06/lumolabs-understanding-image-sharpness.html#comments
http://www.falklumo.com/lumolabs/articles/sharpness/index.html
http://www.falklumo.com/lumolabs/articles/sharpness/ImageSharpness.pdf
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Fig. 1 ISO 12233 Test Chart as I use it. The inset parts are at 1/4x size. The numbers mean x100 LW/PH for 
the large part and x400 LX/PH for the small parts, both applicable if the chart spans the entire picture 

height. Some labs use a variant of the original chart with scales going to 40 rather than 20. But this is 
not sufficient for current high end cameras. A current high end Epson A2 inkjet printer can print the 

above chart to resolve to about the „60“ mark („15“ in my inset parts).
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Fig. 2 Siemens star char. At least this is how this kind of test chart is called in Germany ;)

The artefacts in the middle of the chart are Moiré artifacts caused by resizing the original chart. Any 

photograph of the chart would contain much stronger artifacts.

Fig. 3 Zone plate chart.  Created to suit my needs. The 6 large zone plates have, at their outer border, a thin 
line distance corresponding exactly to 1080 LW/PH (when using the entire chart in a 3:2 frame or the 

marks within a 16:9 frame). The smaller plates correspond to up to 2160 LW/PH and 4320 LW/PH 
respectively. Unlike the Siemens star chart, the zone plate chart magnifies rather than minimizes the 

area of vanishing resolution.

A good recording system will just smear out detail when it cannot resolve it anymore. However, all 

digital recording systems I am aware of go beyond the edge of their capability and try to record in the 
lost signal domain. The purpose of the so-called anti-alias (AA) filter is to avoid this. This leads to 

clearly visible pseudo centers off the center of each zone plate and their exact location tells a lot about 
the recording process. Esp. The strength of an AA filter.

Esp. with subsampling video dSLRs, the above chart reveals the exact amout of line skipping in either 
direction. Esp. with Bayer filters, the Moiré areas have extreme or very dirty looking colors.

As nice as an evaluation of sharpness with test chart may appear, they can only provide subjective 
measures. E.g., look at the following crop from my 4x ISO 12233 inset:
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One may roughly estimate the resolution to be „6“ (2400 LW/PH). Others may say „5.5“ or „6.5“ or 
even „7“. And in a less obvious case one may be trapped by pseudo detail and say „10“ while it 
really only is a  Moiré artifact.

Therefore, a more quantitatively exact measure of sharpness was created a hundred years ago (or 
so).

1.1. Modular Transfer Function

The Modular Transfer Function (MTF) yields a number for any line pattern with given lp/mm. The 
black part and the white part of an extremely wide pattern (like upper half of the image being black,  
lower half being white) define the maximum possible difference of luminosities in any recording of 
the pattern. This difference is called 100% contrast, or 1. The distance between lines as given by the 
lp/mm figure is called the spatial frequency (or just frequency f) of the pattern. The contrast 
between black and white parts of the line pattern will decrease as the lines begin to smear out, the 
MTF number generally decreases as the frequency increases. A small detail: the mathematically  
correct line pattern will not be black and white but with sinusoidal gray levels in between, i.e., only 
the exact middle of a line is perfectly foreground and the exact middle between lines perfectly 
background. This MTF(f) function then is the accepted standard to measure sharpness or resolution.

Probably the best article about MTF is written by Hubert Nasse, Senior Scientist at Carl Zeiss AG. 
„Measuring lenses objectively - Why do we need MTF curves?“ It is available online here: 
http://www.zeiss.com/C12567A8003B8B6F/EmbedTitelIntern/CLN_30_MTF_en/
$File/CLN_MTF_Kurven_EN.pdf and 
http://www.zeiss.com/C12567A8003B8B6F/EmbedTitelIntern/CLN_31_MTF_en/
$File/CLN_MTF_Kurven_2_en.pdf . Therefore, I confine myself within the scope of this article to 
what matters in our discussion.

So, first we observe that a single number cannot define sharpness. In almost all online discussions 
one treats resolution as a single number property but it isn't. Lens manufacturers typically provide 
MTF(f) across the image area (as it depends on the distance and orientation from the optical axis), 
giving it for selected discrete values for f, like 5/10/20/40 lp/mm (Leica) or 10/30 lp/mm (Sigma). 
The coarse-grain contrast (5 lp/mm) is generally associated to image contrast while the fine-grain 
contrast (40 lp/mm) is generally associated to image sharpness. Contrary to common belief, 
contrast and sharpness aren't the same.

When forced to single out a „resolution“-figure, we will often see a single frequency f where 
MTF(f) equals a given value, like 50%, 30% or 5%. These frequencies are often called f50, f30 or f5, 
or MTF50, MTF30, or MTF5, respectively. For digital cameras, MTF50 is the most typically used 

http://www.zeiss.com/C12567A8003B8B6F/EmbedTitelIntern/CLN_31_MTF_en/$File/CLN_MTF_Kurven_2_en.pdf
http://www.zeiss.com/C12567A8003B8B6F/EmbedTitelIntern/CLN_31_MTF_en/$File/CLN_MTF_Kurven_2_en.pdf
http://www.zeiss.com/C12567A8003B8B6F/EmbedTitelIntern/CLN_30_MTF_en/$File/CLN_MTF_Kurven_EN.pdf
http://www.zeiss.com/C12567A8003B8B6F/EmbedTitelIntern/CLN_30_MTF_en/$File/CLN_MTF_Kurven_EN.pdf
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value and often given in LW/PH. E.g., photozone.de uses this convention when giving lens 
resolution figures. In the film era, MTF30 was more normal and I would say that analog MTF30 
and digital MTF50 figures should be compared directly as the former applies sharpening (cf. below) 
and the latter doesn't. Finally, MTF5 is an important figure too when it comes to the limiting 
resolving power of a lens, e.g., for information extraction. E.g., Zeiss quotes an MTF5 figure of 
about 300 lp/mm center resolution for their 35mm SLR prime mount lenses.

Why is all of this important? Because we need it when studying the cummulative effect of various 
sources of „blur“. We need to understand how to define „blur“ and how it „adds“ from various 
sources.

1.2. Blur

In its most simple form, we can consider blur to be the inverse of resolution. E.g., if some MTF50 
figure reads 50 lp/mm (100 LW/mm) then we could say the blur is 1/100 mm or 10 µm (or 2 pixels 
with 5 µm pixels).

However, we can define all this in a much more precise way. As it turns out, the MTF(f) function is 
the Fourier transform of the Line Spread Function (LSF) which in turn is the first derivate of the 
Edge Spread Function (ESF). The properties of the LSF can be derived from the Point Spread 
Function (PSF). The PSF is nothing but the image of a point like source like a star at a starry night. 
Astro photographers often define sharpness as the amount of light energy falling onto the Airy disc 
(compared to a diffraction-limited optics) and call it Strehl ratio. An „80% Strehl“ is considered 
good. ;)

The LSF is the image of a single line. Below is a graph of such a line image:

As you can see, the line isn't exactly recorded by a 
stair case function. There is a certain amount of smearing. An ideal LSF (of a 1 pixel wide line) 
would be 100% between -0.5 and +0.5 pixels and 0% elsewhere. A pixelating sensor cannot record 
lines finer than 1 pixel width with full contrast.

As it turns out, the surface under the LSF and the MTF50 value are related in a simple way. Not 
mathematically exactly, but for most practical purposes. In order to explain, we study several cases,  
from most simple to real cases.



LumoLabs
Whitepaper

6/30

1.2.1. The hard  pixel

This is the hard pixel's stair case LSF as discussed above. Note however that this kind of pixel 
needs to an ugly aliasing „stair case“ effect along edges in the image as shown above. Before we 
discuss the consequence of eliminating this effect, let's first understand the properties of an image 
made of „hard“ pixels. So, we now show both the corresponding ESF and MTF.

   
Despite the hard pixel, the edge isn't infinitely steep. It's slope must be a finite 1/pixel because the 
LSF is its derivate.

It is common practice to characterize an edge by the distance between 10% and 90% luminosities,  
the so-called „10-90% edge blur width“. For the hard pixel, we can easily compute it exactly: 
0.80 pixels (0.90-0.10). It is however, a bit harder to compute the hard pixel's MTF50 value. Above 
is the MTF(f) curve where f is given in cy/px. We already discussed this unit and 0.5 cy/px 
corresponds to 1 LW/px and is the Nyquist limit. MTF(f) is the Fourier transform of the LSF and 
can be solved in closed form (for f given in cy/px):

MTF(f) = sinc(π f) where sinc(x) := sin(x)/x is the sinus cardinalis

therefore MTF(0.5 cy/px) = 2/π or ≈0.6366 and MTF50=0.6033545644...  This means that the 
MTF50 value corresponds to the numeric edge blur for a 82.87% rise (0.5/MTF50) or an edge rise 
from 8.565% to 91.435%, the „9-91% edge blur width“.

In practice, it turns out that this equivalence relation between the 9-91% edge blur width and the 
MTF50 frequency is quite generic. Many authors use both measurements in an interchangeable way 
and most replace the  9-91% edge blur width by the 10-90% edge blur width in doing so. The 
advantage of the 10-90% edge blur width is that it is easily visualized and understood: It means how 
thin an edge appears on screen. MTF50 is a frequency (like cy/px) and its inverse is a length (like 
px/cy). Half this length (half cycle) is the blur width b ≈ 0.5/MTF50.
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Another advantage is that it is easily measured by the 5° slanted edge method. Affordable software 
exists to do the numeric evaluation, e.g., QuickMTF from Kiev (http://www.quickmtf.com). Below 
is the corresponding test chart:

Fig. 4 Slanted edge test chart. It is best to print an unslanted version (as shown above) and mount/photograph 

at a 5° angle. There are alignment bars in the chart above to facilitate the alignment. Because a few 
hundred pixels suffice to measure an edge with better than 0.1px subpixel accuracy, there is no need to 

print the above chart big. Just print on A4 sheet and photograph from a distant wall.

A zone plate chart allows for more accurate manual focussing in live view mode. So, a combination of 

both may provide best results.

1.2.2. The perfect pixel

As mentioned above, the hard pixel isn't perfect as it renders staircase edges. We define the perfect 
pixel to be one which collects exactly as much light as the bright part of the pattern covers. This is  
what downsizing with bilinear resampling would provide when starting with an extremely high 
resolution image made of hard pixels.

   

 This makes the stair case effect invisible but as you 
can see, at the expense of measured sharpness. MTF50 is now 0.377 cy/px and 10-90% edge blur  
width is 1.26 px. Again, the 9-91% rise provides the same resolution figure as MTF50 does.

Note: Whenever you see an edge blur width of less than 1.26 pixels or an MTF50 resolution of 
more than 75.4% of vertical pixels (2340 LW/PH in the case of 3104 vertical pixel resolution like a 

http://www.quickmtf.com/
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Pentax K-7) then this beats the perfect pixel perfomance, i.e., a theoretically perfect camera system. 
This applies to system performance. Single lens performance can be better when measured on an 
optical bench. If you look at photozone.de then you see that e.g., the Pentax FA31 Ltd. lens at f/4 
renders 2345 LW/PH. And this with a sensor which has a perfect pixel limit of 1954 LW/PH... To 
understand this phenomen, we have to proceed.

A good (albeit not exact) approximation of the MTF(f) function for the perfect pixel is the square 
(or cube) of the MTF(f) function for the hard pixel. All we need to remember for the time being is 
the S-shaped form of the MTF(f) function. With

MTF(f) = sincp(π f) 

we obtain MTF50 = 0.443(0.366) cy/px or a blur width of 1.13(1.37) px for p=2(3).

1.2.3. The real pixel, sharp and soft

The real pixel as we find it in our actual photographs when pixel peeping is only approximately like 
the perfect pixel.

 This is an example of a real edge captured with 
a Bayer Sensor (Pentax K-7 with DA*60-250/4 at 250mm f/5.6 1/180s out of Lightroom). There is 
a bit color aberration which is why the edge doesn't look perfectly gray. The 10-90% edge blur 
width is 1.36 px (the steeper curve in the left plot above) and MTF50 is 0.35 cy/px (the upper curve 
in the right plot above). Both is very close to the perfect pixel indeed. Again, 9-91% rise and 
MTF50 match. One may say that all pixels of the sensor are turned into information.

However, this result depends more on development parameters than on anything else. The 
development parameters are the following Lightroom (v2.5) settings: default parameters 
(Brightness: 50, Contrast: 25, Tone curve: Medium) plus sharpening (Amount: 100, Radius: 0.5, 
Detail: 25, Masking: 0). I will refer to the above parameters as the „Sharp setting“.

When parameters are changed to linear setting (as they really come out of the sensor): 
(Brightness: 0, Contrast: 0, Tone curve: Linear) without sharpening (Amount: 0) then the other two 
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curves are obtained in the two plots above. I will refer to the linear parameters as the „Soft setting“.

The numeric values are 3.37 px 10-90% edge blur width and MTF50 is 0.16 cy/px. This is only half 
the resolution – for the exact same image! BTW, the MTF50 value now relates to the 11-89% rise 
and simplifying the rule of thumb to 10-90% is ok if soft images are considered too.

Note: MTF measurements as published on the web are more than everything else, measurements of 
the applied sharpening settings. As there is no standard for these settings, MTF50 values from 
different sources cannot be compared. The difference of edge blur widths may still be significant 
though as we will discuss in a second. Also, measurements of lens MTFs obtained on an optical 
bench are comparable as all luminosities are to be recorded linearly and without applying a spatial  
filter then.

Now, we easily understand how MTF50 figures beating the perfect pixel can exist: It simply is a 
result of oversharpening. Even our Sharp setting is rather moderate as it uses a small Radius of 
0.5 px only. Sharpening can be done much more aggressively and many testers seem to do so.

All we need to remember for the time being is that the Sharp setting yields an S-shaped MTF(f) 
function too. The Soft setting does not.

1.3. More realistic resolution measures

I am not satisfied that resolution measurements are sharpening measures. Quoting MTF50 was ok 
when it was a direct analog measures of optical performance. Not anymore. So, we at Lumolabs are 
researching alternative measures. One is the blur momentum (ZBM and FBM):

where m=0 for the zeroth blur moment ZBM and p=1 for the first blur moment FBM. The following 
holds true for the hard pixel: mth BM(hard)=1/2 for all m. The delta_lum integrand means the 
(minimal) deviation of edge luminosity from an ideal edge step function {0, 1} and px the distance 
from the edge position measured in pixels.

Let's look at images of the respective image qualities (to the 
right). This shows a hard, perfect and sharpened edge, from 
left to right, respectively. The corresponding 10-90% rise 
widths are 0.80 px, 1.24 px and 0.81 px resp. We rather 
would prefer a measure which ranks the (over)sharpened edge last. The hard pixel will always win 
whatever be its measure. But for the other two, we get: ZBM(perfect/sharpened)=0.79/0.74 px and 
FBM(perfect/sharpened)=1.43/2.11 px2.  The following chart shows the ZBM integral over px and 
how both end up to be about the same (6% difference).

For pragmatic reasons, we currently propose to additionally measure and quote ZBM and to avoid 
full white or full black in test charts. However, more research is required and several sample images 
with different levels of sharpening applied should be studied.
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Fig. 5 Comparison of Zeroth Blur Momentum ZBM for a perfect edge and a perfect edge further sharpened 
with USM radius 0.5 px.

The sharpening does almost not affect the ZBM measure which in both cases is about the same ratio 
compared to the hard pixel as for the 10-90% perfect pixel rise width. So, 1.6 x ZBM can directly 

replace the 10-90% rise width.

1.4. Combining blur

At the heart of this paper is the question how blur from different sources (or causes) combines. This 
is a question not typically addressed. We need to overcome this if we really want to understand 
image sharpness.

The first time a ran across this question was by somebody citing the „Kodak formula“:

1/r = 1/rfilm + 1/rlens

where r was the resolution and in the context of this paper, should be read to mean MTF30. 
Unfortunately, no argument was provided for this formula. Our equivalence of 10-90% edge blur 
width b and MTF50 can be used to rewrite the Kodak formula like this:

bp = bp
film + bp

lens

where p=1 is the exponent in a generalized Kodak formula. While I've seen the Kodak formula 
cited with p=2, I must say that the reality is a bit more complex than this.

First of all, let's accept that there is no a-priori reason why blur parameters should be combinable in 
any easy way. An optical system with a series of processing steps (lens, AA filter, color filter, 
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sensor, time integration, digital postprocessing) is mathematically described as a series of 
convolutions of the input signal with the PSF or LSF of the respective step. Convolution is a well 
known mathematical operation and its inverse is called Deconvolution. Just think of a convolution 
as of a Photoshop filter operation, like the application of the „Gaussian blur“ filter.

As mentioned, the nice thing about the MTF is that it is the Fourier transform of the LSF. So, rather 
than convolving all those LSFs, we can simply multiply all MTFs together.

The problem is that in general, if we multiply two functions MTF(f) which are parametrized by two 

parameters, then MTF1(f)×MTF2(f) is not a function described by the same parameter, i.e., the 

MTF50 value of the product isn't easily computed from the respective MTF50 values of the factors.

There is one class of functions which are an exception, exponential functions:

exp(-c fp × 1/r1
p) × exp(-c fp × 1/r2

p) = exp (-c fp × (1/r1
p + 1/r2

p))

which is the Kodak formula for arbitrary p. So, the Kodak formula for exponent p is applicable if 
MTF(f) for 0<f<f50 for both factors roughly looks like exp(-fp). Now, the curve with p=1 looks like 
the radioactive decay curve (no S shape) and the curve with p=2 looks like one half of the Gaussian 
normal distribution curve (yes S shape). We simplify this into the following rule:

b  = b1  + b2 if MTF1 and MTF2 are both mainly concave up to the larger f50 values.
b2 = b1

2 + b2
2 if MTF1 and MTF2 are both mainly S-shaped.

This is an RMS (root mean square) treatment for blur terms.

The following chart compares a number of parameterized functions to model MTF(f):

Fig. 6 Comparison if various MTF(f) functions with equal MTF50 (f50) value. The first (thick red) curve 
corresponds the Gaussian curve (where p=2 applies) and the fourth (thick green) curve corresponds 

the squared sinus cardinalis roughly describing the perfect pixel. Both match well up to f50, as does the 
sinus cardinalis (third line, green) describing the hard pixel and 1/(1+f2.4) (sixth line, dark blue).
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Note that a popular form 1/(1+f2) (fifth line, bright blue) doesn't fit an easy treatment, as does a linear 
form as is sometimes assumed (e.g., in the paper by H. Nasse). Such cases as well as the MTF we saw 

for the „Soft setting“ is better fitted by a simple exponential (second curve, yellow) and should be 
treated with p=1, i.e., by the original Kodak formula. If only one curve is S-shaped, we recommend to 

rather use the original Kodak formula p=1.

In the following, we will combine blur widths by sometimes adding them linearly, sometimes by 
their square. You just saw the reasoning behind it.

Of course, this calculus is most useful to single out individual component performance figures, like 
lens performance before blur due to sensor pixellation and diffraction. Just keep in mind that the 
calculus is approximative only.

2. Sources of blur
In this chapter, we discuss and compare various sources of blur in an image.

Here, we will express lengths in µm (rather than dimensionless px) and frequencies in cy/µm rather 
than cy/px.

px → length / ρ

fold → f  ρ

where ρ is the pixel pitch.

2.1. Bayer matrix, anti aliasing and sharpening

The anti alias filter in front of the sensor (to avoid Moiré patterns) and the Bayer color filter with 
demosaicing algorithm to interpolate local RGB values from the local and neighboring color 
channel values creates a loss of sharpness. The AA filter shouldn't be considered to be independent 
from the Bayer filter too. As Moiré artifacts with a Bayer filter have extreme false color w/o an AA 
filter which remain visible from a distance even if the Moiré pattern does not.

The reason is that a sensor with Bayer color filter has a lower spatial resolution in the color 
channels than it has in the luminosity channel. Therefore, in order to make each color sensor receive 
sufficient color information, each ray is split into 2x2 rays which are (for a full or so-called “strong” 
AA filter) separated by the pixel distance. This is typically done with a pair of lithium niobate 
crystals turned 90° against each other. Note that the lithium niobate beam splitter is no anti alias or 
low pass filter! The common talk to name this device a “camera's AA filter” is technically not  
correct. The pixel structure itself including the microlens array serves as a low pass filter where a 
pixel with 100% fill factor (i.e. which is light sensitive across its entire surface due to its micro lens) 
does an anti-alias integration over its surface.

We'll call the additional beam splitter the Bayer-AA filter or just the “BAA filter”.

The MTF for such integration over a pixel was already given above, in section 1.2.1 on page 6:

MTF (f) = sinc (π f ρ)

The beam-splitter causes integration over twice the pixel pitch:
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MTFAA (f) = sinc (2 π f ρ) = cos (π f ρ) sinc (π f ρ)

MTFBAA (f) = MTFAA (f) / MTF (f) ) = cos (π f ρ)

MTFBAA describes the additional effect of the Bayer-AA filter. It is 0 at f = 1/(2 ρ) and bBAA = 0.5/f50 

becomes exactly (for a “strong AA” filter):

bBAA = 1½ ρ   (for a strong BAA filter)

The extra blur caused by the micro-lenses' pixel integration alone (rendering a perfect pixel) was 
given in section 1.2.2 as the increase in blur width from 0.8 px to 1.26 px which is (using the Kodak 
formula with p=2):

bAA = 1 ρ

The combined effect bAA+BAA ≈ 1.8 ρ and the resulting pixel blur of a Bayer pixel is ≈ 2.0 ρ.

Of course, this is difficult to measure if there aren't two versions of the camera available: the color 
one and a monochrome one w/o BAA filter. Sometimes, the choice exists as monochrome cameras 
w/o BAA filter are offered for astro photography. But not in general. Another nice test could be with 
a Foveon X3 sensor which has no Bayer-AA filter. More on this with some nice MTF tests is found 
here: http://www.foveon.com/files/ResolutionforColorPhotography.pdf .

The matter is complicated further by the fact that contrast (as long as it isn't zero or almost zero) can 
be recovered using sharpening techniques. Direct case to case comparisons lack to pay proper credit 
to this fact. In the discussion above, we have seen that many MTFs become (almost) zero at about 
twice the f50 frequency. This isn't a universal fact but for many natural MTF functions (hard pixel, 
BAA filter, diffraction, defocus) this is a good rule of thumb.

This means that sharpening can almost half the blur widths in an image, say, reduce them by 1/3 in 
practice. As long as the image noise is small at the given spatial frequency (low ISO in current 
dSLRs do the trick) and the resulting blur width stays above ≈ 1.25 ρ, this is achievable without 
significant artefacts.

Therefore, sharpening an otherwise perfect image can cancel the effect of a Bayer-AA filter 
(reducing the blur from ≈ 2.0 ρ to ≈ 1.3 ρ which is a 1/3 reduction). Sometimes, this method is 
preferrable over post-processing the Moiré and false specular color artefacts created by a missing 
BAA filter.

The complication is that as a consequence, a camera with a Bayer sensor is almost always combined 
with sharpening. This makes the blur analysis a bit awkward.

I decided to evaluate the effect in a very pragmatic way. As has been seen, the „Sharp setting“ of the 
Lightroom development process roughly compensates for the effect of the BAA. And the „Soft 
setting“ is believed to better represent the raw data as recorded by a sensor. Therefore, the 
difference of resolution figures from the Soft and Sharp settings are believed to represent the 
amount of undone blur cancellation due to the BAA filter.

Maybe this is wrong. But let us study the difference anyway. If not the effect of BAA filtering it at 
least will showcase the effect of sharpening.

http://www.foveon.com/files/ResolutionforColorPhotography.pdf
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Fig. 7 Blur width of the „Soft setting“ vs. blur width of the „Sharp setting“ (fat green line). Note that only 
the Lightroom development settings are different! The accepted combination formula is the Kodak 

formula with p=1 (yellow line) while p=2 delivers a bad fit (blue line). As to be expected from the 
concave form of the MTF curve for the „Soft setting“.

The red line represents a power law (with exponent ½) which delivers very similiar results.

The fat green line is a 2D curve because the blur was produced by travelling from backfocus to exact 

to frontfocus. As one can see, the same amount of blur for the sharp setting produces slightly different 
amounts of blur for the soft setting for front and backfocus, resp. Where backfocus has more soft blur 

than front focus. This is explained by a reversal of color aberrations when going from back to 
frontfocus and a nonlinear response curve for different colors and luminosities.

In this kind of sharp vs. soft blur plot, the point of exact focus is much more visible than in the blur vs. 
shift plot of fig. 14.

The effect of the Soft setting is best described by linearly adding a “non-sharpening” blur

bsoft = 2.05 ρ   (add blur linearly as the last step)

to the blur values of the Sharp setting. At least with a Pentax K-7 camera. It slightly varies with 
different lenses and scenarios but not by much.

Needless to say that 2 px difference is huge ;) The sharpening seems to undo more than just the 
Bayer-AA filter blur which should only account for about half the effect (cf. above).
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2.2. Diffraction

The quantum nature of photons implies that 
you can't simultaneously know their 
direction and position. This does not only 
severely limit the resolution of a light field 
camera such as the Lytro cameras. But any 
lens aperture provides an imprecise measure 
of a photon's position and this implies that 
their direction such as measured by their 
detection on a recording plane will smear. 
The better the measurement of position (i.e., 
the smaller the lens aperture) the larger the 
smear.

The smear (the  diffraction PSF) looks like 
the image to the right. A central region with 
most of the luminosity (84%) is bound by a 
first ring with null intensity. The central 
region is called the „Airy disk“. It has a radius (half diameter) of

rAiry = 1.22 λ N

where λ is the wavelength of light (e.g., 0.55 µm for green light) and N is the aperture's f-stop 
number, the ratio of focal length / aperture diameter.

The Rayleigh criterion defines the limiting resolution by a line pattern where two line pairs are r Airy 

apart. The true limit though is

f0 = 1 / (λN)

which is the frequency of zero MTF. The full MTF is:

MTFdiff (f) = 2 / π (arccos(k) - k √(1 – k2)) with k = f/f0 = f λN

Note that here we use an alternative way to specify spatial frequencies (in terms of dimensionless k 

or units of f0) as we work independently from a pixel size. k is best expressed in [cy/λN] and can be 

easily converted into a [cy/px] measure by expressing the pixel size in λN.

E.g., λN=1 µm for λ=0.55 µm and N=1.8. So, for an f-stop of N=1.8 and for a 5 µm pixel, 

0.5 cy/px translates to k=0.1. The Rayleigh criterion translates to kRayleigh=0.82.

We will denote all lengths divided by λN (expressed in units of λN) with a strikethrough.

The MTF for a cycle as large as the Airy radius (kRayleigh) is MTF (fAiry) = 8.9%. This corresponds to 

the Raleigh criterion and is enough contrast to recover details via sharpening.
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The function is depicted to the right 
(as a function of k). It is very flat. It 
has a slope at zero of -4/ π which is 
-1.27 rather than -1.22. It turns out 
that

f50 = 0.5/1.23771 f0

The corresponding edge blur width as 

we define it (0.5/f50) is blur:

bdiff = 1.24  λN

which is 2 % more than rAiry ;)

bdiff = bdiff /(λN) = 1.24 = 1.02 rAiry

Below is a measurement of blur width vs. aperture:

Fig. 8 Dependency of edge blur width with aperture. The blur width as given by the equation above is shown 

too (with a static blur offset of 1.16 px in the case of the p=2 – green line). λ = 550 nm was used. The 
FA*300 lens is an f/4.5 lens.

The p is the exponent in the Kodak formula used. p=2 yields a more reasonable static blur offset and 
p=1 turns out to be inapplicable when taking the blur at small N due to aberration and defocus into 

account.

We will combine blur bdiff due to diffraction using the Kodak formula with exponent p=2. This 
means it combines like defocus for an otherwise sharp signal.

To summarize: For green light, the Raleigh size f9 for half a cycle is 0.336 N µm and the f50 blur 
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width is 0.682 N µm for an aperture f-stop N.

2.3. Defocus

Defocus causes (with an ideal lens) a point to be projected as disk with finite diameter coc, the so-
called circle of confusion (CoC).

The CoC is an image of the lens' exit pupil projected onto an out-of-focus plane. If this plane is a 
distance df apart from the true focal plane (has a focus error df), then the CoC's diameter is

coc = df / N

where N is the lens aperture's f-stop number. Defocus causes additional blur. As above, we will 
denote the circle of confusion diameter expressed in units of λN by a strikethrough symbol C:

C = coc / (λN) = df / (λN2)

2.3.1. Classical defocus blur and reason for a wave-optical treatment

There is a ray-optical, classical treatment to derive the MTF of a defocused lens. However, as the 
circle of confusion approaches the size of the Airy disk, the classical treatment produces a large 
error. The reason can be seen in the following image:

Fig. 9 A slice through the 3-dimensional PSF (point spread function), the image formed when depicting a 
single bright point, before, at and behind the focus plane.

[from upload.wikimedia.org/wikipedia/commons/1/10/Spherical-aberration-slice.jpg ]

Due to diffraction, the image of a point source in the focal plane becomes the Airy pattern with 
rings separated by black (cf. above). But by defocussing, the image doesn't simply become fuzzy. 
The outer rings receive more energy which blurs the image. But the inner ring becomes smaller! 
The consequence is that very small amounts of defocus do not additionally blur the image! 
(Defocus is actually scientifically used to reconstruct phase information and additional image 
resolution.) Eventually, this explains why we treat defocus in a full wave-optical fashion now.

http://upload.wikimedia.org/wikipedia/commons/1/10/Spherical-aberration-slice.jpg
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H. H. Hopkins in 1955 published the corresponding original work: “The frequency response of a  
defocused optical system” [ www.jstor.org/discover/10.2307/99629?
uid=3737864&uid=2&uid=4&sid=21100656738486  ] Hopkins laid the foundation for construction 
of all modern photo lenses and actually invented the zoom lens himself. But his work has, as far as I 
can see, not yet been made accessible to photographers (it uses terms like wavefront phase errors 
which isn't something a photographer can refer to). Let me try to change that now.

The MTF of defocus for small enough apertures (sin x ≈ tan x) is:

MTFdefocus = MTFa / MTFdiff where MTFa =

and  MTFdiff (cf. above) =

expressed in terms of k and C (cf. above). The full MTF for defocus plus diffraction is MTFa.

In order to make this result more accessible, I show a graph for C = 10. As explained above, at an f-
stop of N=1.8 and for a 5 µm pixel, this would correspond to the circle of confusion covering 10 µm 
or 2 pixels. And it would mark a focus error (shift of focus plane) of 18 µm.

As you can see in  Fig. 10, the frequency k50 where MTF becomes 0.5 is roughly k50=Q/(√2 C) with 
Q ≈ 1. The corresponding blur width is 0.5/k50 or:

bdefocus = Q-1 √½ C

i.e., the blur width is 71% the diameter of the circle of confusion, if we ignore Q for a second. The 
width where all resolution is killed (zero contrast) is Q-1 1.22 C.

So, while the diffraction blur width is 51% of the diameter of the Airy disc, the defocus blur  
width is 71% the diameter of the circle of confusion which is 40% larger.

The same relation holds about true for the vanishing frequency (bandwidth). This is an important 
result if we want to relate both sources of blur to each other. This consideration is critical but 
normally missing when deriving the so-called “optimum aperture” (“förderliche Blende” in 
German). Both diameters are then typically compared directly. There is the added difficulty that the  
standard deviation of distance from the center diverges for diffraction.

http://www.jstor.org/discover/10.2307/99629?uid=3737864&uid=2&uid=4&sid=21100656738486
http://www.jstor.org/discover/10.2307/99629?uid=3737864&uid=2&uid=4&sid=21100656738486
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Fig. 10 MTF for defocus of C = 10 (without diffraction), e.g., a focus error of 18 µm at an f-stop of 1.8 (red 
curce). The horizontal axis is k, the vertical axis is the transfer function contrast MTF(k).

The MTF for diffraction is shown too (blue curve). The ray-optical MTF for defocus is ½ (green line) 
at k50=1/(√2 C) and vanishes at k0=1.22/C (blue steps). In the graph above, the performance is better 

due to wave-optical effects but will decrease to the ray-optical values if C becomes large enough.

Fig. 11 MTF for defocus of C = 1, 2, 3, 5, 10, 20, and 50 (red lines, from above). The horizontal axis is k.
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Some notes: The MTF for defocus of  C = 3 (3.003 exactly) is roughly equal to the MTF for 
diffraction up to and at k50. For C ≤ 5, MTF does not become zero! For larger defocus, it approaches 

the classical MTF for defocus as described in Fig. 10. At C = 3, the CoC is 1.22x larger than the Airy 
disk! The MTF in Fig. 10 is the 3rd red curve here, counting from the left.

Additional notes: the full MTF including diffraction is obtained by multiplication with the MTF for 
diffraction (blue curve). And the MTF for defocus w/o diffraction is symmetrical around k=0.5.

The fact that the MTF becomes negative for large defocus is known as the phenomenon of spurious 
resolution where line patterns are imaged with a wrong number of lines of weak contrast.

Before we proceed, let me show the MTF for defocus for a set of defocus parameters C (cf. Fig. 11).

The MTF for defocus (w/o diffraction) is symmetrical around k = ½.

As far as I know, this result wasn't published before. It allows to express MTF(k) in terms of 
MTF(1-k). This is an impportant property because the series expansion for MTF(k) for 
defocus converges only slowly as k=1 is approached but converges rapidly around k=0.

As you can see, the MTF starts to look unlike a classical MTF for defocus for small values of 
defocus C ≤ 5 (CoC smaller than twice the Airy disk). This is an area large enough to be of interest. 
It is the area where defocus blur is significantly determined by quantum or wave-optical effects.

2.3.2. Wave-optical effect

In a classical, ray-optical treatment, the defocus blur is expressed as bdefocus = Q-1 √½ C with Q=1.

Let's have a look at the MTF function at the corresponding k = 0.5/b. It should be 50%:

Fig. 12 MTFdefocus (k = 0.5/bdefocus, Q = 1) as a function of C (horizontal axis).

The deviation at C =1is massive but is approaching the ray-optical result (0.5) for large enough 
values of C . We can cope with this effect in two ways:
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1. We modify the Kodak formula by using a matching power coefficient p when combining 
blur due to diffraction and defocus.

It turns out that this is doable with good precision using Q=1 and p=2.8.

2. However, we prefer to use the RMS-like Kodak formula with p=2. Obviously, p=1 would 
be a bad match. We have then computed the values for Q (when entered into the blur term 
for defocus in the Kodak formula) which best matches the overall blur of diffraction and 
defocus combined. The heurisic result is (cf. ):

Q-1 ≈ 1 – 1 / (3 C)

Fig. 13 The wave-optical or quantum correction factor Q-1 as a function C between 1 and 10 (blur points).

The red line shows the heuristic approximation curve above which is > 95 % accurate for C ≥ 1.

This particular form has the nice property that it leads to a simple, yet refined version of our blur 
width for a defocused system:

bdefocus = √½ (C – 1/3)    –    or which is the same:

bdefocus ≈ 0.71 (coc – N/5.6 [µm])

This is the same formula as above, but now with Q-1 filled in.

So, the MTF50 blur width for a defocused system is obtained by taking the circle of 
confusion diameter coc in µm, subtracting ≈N/5.6, and dividing the result by √2.

As far as I know, this result is new (in the photographic community) and easy enough to apply. It 
takes the wave-optical effects into account. Of course, a negative result is to be replaced by zero as 
defocus doesn't defeat diffraction. The resulting blur width can be combined with other sources of 
blur using the Kodak formula with p=2.
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2.3.3. Tolerance for defocus

The original paper derives a tolerance for defocus where diffraction MTF is reduced by 20% or less. 
It is:

C < 0.40 / k

or with f = 0.5/ρ [cy/µm] and k = f λ η :

coc < 0.80 ρ

So, the “surprising” result is that focus errors remain invisible if their circle of confusion remains 
smaller than a pixel (at coc=ρ, the loss is 32% though). What a break-thru result ;)

2.3.4. Photographic example

We know how defocus blurs an image for a known circle of confusion diameter coc. Now, we need 
to relate coc to common terms like f-stop and focal distances.

The shift df of the focal plane in the image space can be translated to a shift s of the focal plane in 
the subject space. Using the thin lens equation, it is:

s = 1 / ((1 + df (b + g) / b2) M2) df ≈ 1/M2 df

where M = b / g is the image magnification. And with coc as given in section 2.3 on page 17:

df ≈ s M2

coc ≈ s M2 / N

C ≈ (s / λ)  (M / N)2

By combining with the formula for defocus blur above we obtain:

bdefocus = √½ (s M2 / N – N / 5.6)
where s is the focus shift in the real space,

M the image magnification and N the f-stop.

Fig. 14 shows the change of blur due to defocus in a real-world experiment. It turns out that the 
theoretical result is in nice coincidence with the theory (formula above) if the Kodak formula (p=2) 
is applied to unsharpened blur measurements. Obviously, sharpening kills part of the defocus blur 
too. So, this is how overall blur for sharpened images was eventually computed (cf. section 2.1 for 
bsoft):

b(s) = √[(b(0) + bsoft)2 + bdefocus(s)2] – bsoft

The red line in Fig. 14 shows the expected blur values according to the formula above. The green 
line connects actual edge blur measurements, with no offset and expressed in px.
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Fig. 14 The variation of edge blur width b with amount of defocus by varying (shifting) the subject distance. 
The official parameters are: lens focal length f=250mm, subject distance g=4700mm, aperture N=5.6, 

shift s is the x axis and pixel size ρ=5µm.

However, a zoom lens close focused to a target can have largely different parameters (the ones 

mentioned above produce large deviations, up to a factor two!). I measured the magnification M 
directly (which correponds to f=191 mm) and corrected the effective aperture f-stop using the thin lens 

formula (at this focus distance, it is f/5.9).

The shift is the amount of defocus in the subject space, with negative values corresponding to 

backfocus. The red line is the theoretical curve as discussed above. The green line is the edge blur as 
measured.

The 0.8 ρ focus tolerance expressed above corresponds to |s| < 14 mm. Interestingly, the green 
measured values seem to be a tad more sensitive for true focus. But it may be accidental. The 14 mm 

tolerance requires a 23 µm accuracy in the focal plane (in this example).

The tolerance region in the figure above (14 mm) is the depth of field for pixels remaining sharp. 
This differs from the photographic depth of field (DoF). There are enough treatments of the 
photographic DoF due to acceptable defocus, e.g., by applying the Zeiss formula that coc should 
stay smaller than 1/1730 of the image diagonal, typically chosen on 35mm film to be 25 µm 
(1/1730) or 0.03mm (1/1500).

With the Zeiss CoC parameter for an APSC camera (17 µm) the classical DoF formula yields a DoF 
of ±56 mm. So, the tolerable “pixel peep” shift is about ¼ of the DoF.
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2.3.5. A note on equivalency

The image magnification is squared in the formula for df in the previous section 2.3.4. This means 
that a sensor of e.g., half size requires four times the focus accuracy df-1 for equivalent results (i.e., 
same shift s in subject space). Moreover, a sensor of half size would then typically use a phase AF 
measurement triangle base of only half size too (e.g. because it uses an AF sensor of same f-stop) 
actually lowering focus accuracy (by half) rather than increasing it. So, both effects combined mean 
that the technical challenges for accurate focus for a sensor of half size are 8x harder.

However, M/N (and C) are sensor-size independent for equivalent lenses and the same focus 
accuracy. Nevertheless, if the lower focus accuracy is offset by using (non-equivalent) lenses of 
constant f-stop, C will decrease and behave more ray-optically.

I consider the dramatic (square or cubic) improvement of focus accuracy with sensor size to be the 
main advantage of a larger sensor size as it can't be offset by use of equivalent lenses.

2.3.6. Ability of deconvolution operators to reduce defocus blur

... in progress

The previous section on the possible cancellation of the BAA filter and the reduction of perceived 
defocus blur due to sharpening contained some information already. It works well as long as the 
blur width must not be reduced by more than 2 pixels and as long as image noise is very small.

However, blur due to defocus can be removed for much larger blur widths. This is possible because 
the blur kernel is known and can be algorithmically inverted. However, the corresponding 
mathematical operator is instable, i.e., small input errors (e.g., noise or a deviation in the point  
spread function) cause large output errors (e.g., artefacts). This is why “regularization” is required 
for pleasing results. On the other hand, this regularization reduces the output sharpness.

I tried a number of algorithms and products, incl. Topaz Infocus. But only FocusMagic could 
convince me.  FocusMagic successfully restores image sharpness for defocus blur up to 10 pixels. 
Sometimes more. But I would then recommend to first reduce the image size. By restoring image 
sharpness, I mean restoring image detail. You'll see information which was invisible beforehand.

Unfortunately, FocusMagic is 32 bit software and has trouble to run on more recent machines. It 
hasn't seen an update for a long time. Still, it seems to be by far the best option out there.

… an article update will show side be side comparisons with USM, LR and Infocus sharpening.

2.4. Lens aberrations

2.4.1. Defocus, Spherical aberration, Coma, Astigmatism

... in progress

cf. http://www.telescope-optics.net/mtf.htm and 
http://demonstrations.wolfram.com/SeidelOpticalAberrations/ 

Also, cf. the page MTF3 in the 1st link on aberration compounding: they use the Kodak formula 
with p=2.

http://www.telescope-optics.net/mtf.htm
http://demonstrations.wolfram.com/SeidelOpticalAberrations/
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2.5. Shake

Shake originates from a change of the optical axis angles (nick, yaw and rotation) during the 
exposure. As magnification grows towards M=1, a change of the optical axis translational 
parameters (positional shift) starts to play a rôle as well. We don't discuss shake in macro 
photography. In general, preventing it is as challenging as in astro photography.

2.5.1. Measuring shake

Normal shake is most easily measured by taking test shots of a slanted edge test chart (cf. Fig. 4 on 
p. 7). Translational shake can be ignored for g>100 f, e.g., if the chart for a 50 mm lens test is on a 
wall 5 m away. The same camera displacement then leads to only ≈1% blur if translational when 
compared to rotational, e.g., a 5 px blur measure has less than 0.1 px translational error. This is also 
less than a „four stop“ blur reduction (≈6%) due to some image stabilization or shake reduction 
apparatus.

For free-hand test shots, care must be taken to stay within a region of neglegible blur due to 
defocus. Use the formula in section 2.3 Defocus on p. 17 to estimate the region and make sure it 
spans 100 mm at least. When manual-focussing using LiveView, make sure you still hold the 
camera viewfinder at your eye. Using contrast AF may be your only choice then...

The blur due to shake bshake is combined using the Kodak formula with p=2.

Therefore, an accurate estimation of bshake requires an accurate knowledge of the static blur without 
shake. Unfortunately, tripod measurements aren't normally accurate enough. You either need as 
many tripod measurements as free-hand ones, or you use an extrapolated blur value at zero 
exposure time to become the offset value. Note however, that the extrapolation method is only valid 
if you don't change aperture or ISO, i.e., if you use an adjustable artificial source of light. Also note 
that most tripods aren't stable enough for short time shake measurements (even with mirror lockup 
and remote triggering) and the camera clamped directly to a massive rock table or alike may be the  
better choice.

2.5.1.1. The double slanted squares method

It can be shown that the amount of motion blur in an individual image due to angular velocity can 
be measured in a self-contained manner using a test chart made of two slanted squares, tilted at 
22.5° and -22.5°, resp. against the horizon. Be:

a1,2 = b2
2 - b2

1 (widths of a vertical and horizontal edge at the first square), and
a3,4 = b2

4 - b2
3 (widths of a vertical and horizontal edge at the second square), then

bshake = (a2
1,2 + a2

3,4)¼ (the exponent is ¼ if too tiny to read)

b2
0 = (b2

1 + b2
2 + b2

3 + b2
4) / 4 - b2

shake/2 

φ = - arccot ((a3,4 – a1,2) / (a3,4 + a1,2)) / 2 

independendly from the direction φ of shake. This method should be combined with averaging the 
edge blur widths b2

i of both parallel edges for every square, i.e., 8 edge widths should be computed. 
It is therefore important to make sure that lens aberrations are constant throughout the entire range 
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covered by the two squares.

The averaging of parallel edges with opposite dark/bright transitions is required because the non-
linearity of the luminosity response curve (after sharpening) makes the edge blur measure become 
dependent on the sign of direction of shake.

bshake and b0 as measured by this method do already separate the blur due to shake and the static 
offset at the level of a single test chart image.

Note: This method of double squares and 8 edges and formula is my discovery. The publication in 
this paper makes it „prior art“ for any forthcoming patent application. The method includes using 
double slanted squares in the absence of shake in order to separately measure different kinds of 
aberration.

2.5.1.2. The normal slanted edge method

The normal slanted edge method measures 1, 2 or 4 edges in the slanted edge chart. Two edges may 
be measured to separate the blur in nick and in yaw direction from each other. This gives an idea 
about the approximate direction φ of blur. Four edges (with two edges parallel) are measured to 
minimize the effect of a non-linear luminosity response curve as dicussed above.

It turns out that about 20 measurements are required for acceptable variations; and about 10 tripod 
measurements for the static offset taken at identical shooting parameters. The Kodak formula is 
applicable to mean values rather than individual values and requires knowledge of the static blur 
offset. The total mean blur may then be estimated by

b2
shake = b2

nick + b2
yaw -2 b2

0 or
b2

shake = 2 (b2- b2
0)

in the absence of two measured orthogonal edges per test chart.

2.5.2. Expected shake

The nice thing about bshake is its direct correlation to the angular movement of the camera during the 
exposure,

bshake (t) = υ t f

where υ is the angular velocity (rad/s) of camera shake, t is the exposure time and f  is the focal 
length. Of course, this only applies if t is small compared against the periodicity of shake 
oscillations.

The chart to the right shows the power 
distribution of free-hand shake for a typical 
human photographer [Source:  
http://www.colorfoto.de by Boris Golik]. It looks
a lot like 1/f noise but with a peak around 
4 - 10 Hz. For a single frequency of shake (i.e., 
for a harmonic shake), I computed the blur width 
to be

http://www.colorfoto.de/
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b2
shake (t) = ~ f 2 (½ – (cos(ω t) – 1) / (ω t)2)   where   ω = 2 π  frequencyshake

The plot to the right shows this harmonic blur 
as a function of exposure time t (in some 
arbitrary units).

In the general case of 1/f noise though, in 
particular in the form of 1/f q noise  for some 
exponent q, the blur becomes

bshake (t) = ~ f  t(q – 1)

and for q=2, we get a linear form for arbitrary 
exposure times. In general with an emphasis on 
some shake frequency, we may expect a superposition of a clipped linear law and a power law for 
some exponent.

A shake reduction mechanism (either optically by lens shift or mechanically by sensor shift) will  
almost certainly correctly register the dominant harmonic part (their gyro angular velocity sensors 
typically are fast enough for frequencies up to 20 Hz) and reduce the corresponding amplitude of 
shake by some factor. Factors in the vicinity of a tenth are common. The 1/f noise parts may be 
reduced less, esp. their higher frequency terms. This can lead to a different exponent when fitting 
the bshake (t) function.

2.5.3. Empirical results

The following is a chart of real measurements shake bshake(t)/f due to free-hand vibration and other 
sources like shutter, mirror slap etc.

Inserting a known pixel size and dividing by the focal length f, bshake(t)/f  becomes a dimensionless 
function, i.e., a blur width best measured in mrad (1 mrad ≈ 1 / 17.5°). For freehand photography 
without using image stabilization technology, this function should only depend on the photographer 
and weight (moment of inertia) of the camera+lens.
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Fig. 15 Image shake as measured with a Pentax K-7. The K-7 has 5µm pixels. The wide straight lines are 

linear fits with a constant angular velocity of  υ=10 mrad/s and 3 mrad/s with Pentax shake reduction 
(SR) disabled and enabled, respectively.

For all but the largest focal lengths, blur angles smaller than 0.1 mrad are not measurable. For the 
largest focal lenghts (135 mm and most of all, 300 mm) one may see however that the linear fit 

extends down to about 1 ms. It applies nicely above 30 ms as well. The region between 4 ms and 
30 ms is specific to a particular camera model and may include shake due to shutter motion.

The data in this chart are collected from 4 testers, 4 camera bodies and 7 different lenses. It may be 
one of the most complete charts of its kind. In this log-log plot, a linear fit (as described by the first 

formula in section 2.5.2) always looks like a straight line of slope +1. Different factors lead to parallel 
lines with their distance being their relative ratio of factors. The SR line corresponds to a constant 

benefit of 1.7 f-stops. Some combinations of focal length and exposure time beat that, others don't.

So, our empirical result is that a linear relationship of blur and exposure time is an acceptably good 
relationship with υ≈10 mrad/s for free hand exposures and υ≈1-5 mrad/s for various image 
stabilization techniques and situations.

To translate this to a blur width, just multiply with focal length, exposure time, 1/pixel size. E.g.:

bSR (t=1/15s,f=50mm,u=5µm)= 3/1000 * 1/15 * 50mm / 0.005mm = 2 px

This width must then be added using the Kodak formula using p=2, increasing a perfect pixel's blur 
from 1.25 px to 2.35 px or by ≈100%. Note that in this particular example, the Pentax K-7 actually 
performs better. The formula given shall serve as rule of thumb only in an attempt to provide a more 
precise version of the famous 35 mm 1/f  rule for taking shake-free photos.
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2.5.4. Tripod classification

One well known image stabilization technology is the tripod which shall eliminate blur from free 
hand shake and other sources of shake. We found that simply referring to a „tripod“ is not good 
enough. So, we use the following classification of tripods:

● Class A: A tripod which is very massive (like 100 kg) and has zero slackness in the junction 

to the camera. An example is a camera clamped to a massive stone table. Or an equivalent  
tripod.

● Class B: A tripod which damps normal vibrations by several order of magnitudes if given 

some relaxation time. An example is the normal steel spike tripod sitting on a concrete 
surface. Class B requires specification of a relaxation time.

● Class C: A tripod which can maintain a constant direction of view (which is no source of 

shake) but would not resist to short impacts of force which then may change its direction. 
Class C requires specification of a mass.

Another example is a Scottish laptray when used upside down (flat side down) on a concrete 
surface. It is filled with little balls made of polystyrene and will keep its form. It is an 
excellent zero mass class C tripod. It behaves like a hand without inducing hand shake.

● Class D: A camera placed on a stable table without fixing it.

● Class E: A monopod with a single rod only.

Additionally, testing should use mirror lockup and remote triggering when applicable or be 
specified otherwise.

2.6. Motion blur

... in progress
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2.7. Noise

... in progress

Taking slanted edge test chart shots at higher ISO actually leads to artificially reduced edge blur 
measurements even though the true resolving power at higher ISO is less. This is due to a loss of 
tonal detail at higher ISO which acts like higher contrast or stronger sharpening. This effect is about 
as strong as the diffraction effect and acts in the opposite direction (if ISO is increased to 
compensate for a larger f-stop).

2.8. Atmospheric perturbations

... in progress

cf. http://falklumo.blogspot.com/2010/04/howto-long-range-telephoto-shots.html 

2.9. Precision and calibration

... in progress

3. Practical considerations and examples
... in progress

http://falklumo.blogspot.com/2010/04/howto-long-range-telephoto-shots.html
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